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Abstract

We consider the problem of placing a speci�ed number (p) of facilities on the nodes
of a network so as to minimize some measure of the distances between facilities. This
type of problem models a number of problems arising in facility location, statistical
clustering, pattern recognition, and also processor allocation problems in multiprocessor
systems. We consider the problem under three di�erent objectives, namely minimizing
the diameter, minimizing the average distance, and minimizing the variance. We observe
that in general, the problem is NP-hard under any of the objectives. Further, even
obtaining a constant factor approximation for any of the objectives is NP-hard.

We present a general framework for obtaining near-optimal solutions to the com-
pact location problems for the above measures, when the distances satisfy the triangle
inequality. We show that this framework can be extended to the case when there are
node weights and also to the case when there is a distinguished set of nodes which must
be chosen in the placement. We also investigate the complexity and approximability of
the extension of these problems, when two distance values are speci�ed for each pair of
potential sites. In these cases, the goal is to a select a speci�ed number of facilities to
minimize a function of one distance metric subject to a budget constraint on the other
distance metric. We present algorithms that provide solutions which are within a small
constant factor of the objective value while violating the budget constraint by only a
small constant factor.
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1 Introduction and motivation

Several fundamental problems in location theory [HM79, MF90] involve �nding a placement

of facilities obeying certain \covering" constraints. Generally, the goal of such a location

problem is to �nd a placement of minimum cost that satis�es all the speci�ed constraints. In

general, �nding a placement of su�cient generality minimizing a cost measure is often NP-

hard [GJ79]. Here, we consider several problems dealing with the placement of a speci�ed

number of facilities on the nodes of a given network so as to minimize some function of the

distances between the facilities. Because of the nature of the placement desired, we refer to

these problems as compact location problems. For example, consider the following processor

allocation problem which arises in the context of multiprocessor systems. We are given a

computational task consisting of a number of communicating subtasks. At a given time, some

of the processors may already be allocated and the remaining processors are available. The

problem is to select a subset of processors from the currently available set of processors, one

processor per subtask, such that the cost of communication among the processors executing

the subtasks is minimized. In this application, the processors must be allocated quickly,

and this may conict with the goal of minimum communication cost among the selected

processors.

Such location problems are commonly modeled as problems on undirected graphs. The

nodes of the graph represent the available sites. A cost is associated with each pair of

sites, and it is speci�ed as the weight of the edge joining the corresponding pair of nodes.

Depending on the problem, this cost represents one of several parameters such as the cost of

transporting components between the pair of sites, the cost of setting up a communication

link between the pair of sites, the time required to communicate between the pair of sites,

etc. In some problems, there is also a weight associated with each node. This node weight

may reect the cost of setting up a facility at the corresponding site.

Under this graph theoretic setting, a placement is a subset of nodes of a given cardinality.

The cost of a placement is a problem-speci�c function of the weights of the nodes and edges

in the subgraph induced by the placement. Examples of such cost functions are the sum

of the weights of all the edges in the placement (which may reect the total cost of setting

up communication links between each pair of chosen sites), the maximum weight of an edge

in the placement (i.e., the bottleneck cost , which may reect the maximum time needed to

communicate between any pair of chosen sites), etc. The goal of a compact location problem

is to �nd a placement of minimum cost.

In practice, it is often the case that a minimum cost placement must be chosen subject to

budget constraints on other cost measures. We also consider such constrained problems where

the goal is to �nd a placement that minimizes one cost measure subject to a budget constraint

1



on another cost measure. Since these problems involve two cost functions, we refer to them

as bicriteria compact location problems. As an example, consider once again the scenario

presented above in the context of high performance computing. If the processors need to

communicate with each other frequently to exchange data, then these data communication

delays increase the time needed to complete a task. Further, the computation may require

the processors to be synchronized often, thus adding to the time needed to complete the task.

Therefore, it is desirable to select a subset of processors so that the total communication cost

among the processors is minimized and the maximum delay due to synchronization during

the computation does not exceed a given bound.

Such compact location problems also arise in a number of other applications such as

allocation of manufacturing sites for the components of a system so as to minimize the cost

of transporting components, distributing the activities of a project among geographically

dispersed o�ces so as to minimize the transportation or communication cost among the

o�ces, statistical clustering, pattern recognition, load-balancing in distributed systems, etc.

(see [An72, AMO93, HM79, MF90, KN+95a] and the references cited therein).

In graph theoretic terms, (bicriteria) compact location problems can be formalized as

follows. Suppose we are given two weight-functions c; d on the edges of the network. (For

example, the �rst weight function c may represent the cost of constructing an edge, and

the second weight function d may represent the actual transportation- or communication-

cost over an edge once it has been constructed.) Given such a graph, a positive number

B and a positive integer p, we de�ne a general bicriteria compact location problem (A;B)

by identifying two minimization objectives of interest from a set of possible objectives. The

parameter B represents the budget on the second objective B and the goal is to �nd a

placement of p facilities having the minimum possible value for the �rst objective A such

that this solution obeys the budget constraint on the second objective. For example, consider

the Diameter-Constrained Minimum Diameter Problem denoted by (Min-Dia, Dia): Given

an undirected complete graphG = (V;E) with two nonnegative integral edge weight functions

c (modeling the building cost) and d (modeling the delay or the communication cost), an

integer p denoting the number of facilities to be placed, and an integral bound B (on the

delay), �nd a placement of p facilities with minimum diameter under the c-cost such that

the diameter of the placement under the d-costs (the maximum delay between any pair of

nodes) is at most B.

The remainder of the paper is organized as follows. Section 2 contains preliminaries and

the formal de�nitions of the problems considered in this paper. In Section 3 we summarize the

results obtained. In Section 4 we discuss the related research done in this area. Section 5 con-

tains non-approximability results for graphs with arbitrary weights. In Section 6 we present

basic approximation algorithms for the unicriterion compact location problems. Section 7
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contains our approximation algorithms for the diameter constrained bicriteria problems. In

Section 8 we outline the approximation algorithms for the sum constrained problems. Sec-

tion 9 discusses some extensions of our approximation algorithms. Finally, Section 10 contains

concluding remarks and directions for future research.

2 Preliminaries and problem de�nitions

We consider a complete undirected n-vertex graph G = (V;E) with one or two distance

functions speci�ed on the edges. Given an integer p, a placement P is a subset of V with

jP j = p. Let � denote a distance function on the edges of G. We use D�(P ) := max
e=(v;w)
v;w2P

�(v; w)

to denote the diameter, S�(P ) :=
P

e=(v;w)
v;w2P

�(v; w) to denote the sum of the distances and

Q�(P ) :=
P

e=(v;w)
v;w2P

�2(v; w) to denote the sum of the squares of the distances between the nodes

in the placement P .

Note that the average length and the variance6 [AI+91] of an edge in a placement P are

equal to
2

p(p� 1)
S�(P ) and

2

p(p� 1)
Q�(P ) respectively. Since these di�er from the total

length and the sum of the squared distances only by the respective scaling factors, �nding

a placement of minimum average length or minimum variance is equivalent to �nding a

placement of minimum total length and minimum sum of the squared distances respectively.

We use this fact throughout this paper.

As is standard in the literature, we say that a nonnegative edge-weight function � satis�es

the triangle inequality, if we have �(v; w) � �(v; u) + �(u;w) for all v; w; u 2 V . We now

de�ne the problems studied in this paper beginning with unicriterion problems.

De�nition 2.1 An instance of the minimum diameter placement problem, (Min-

Dia), is given by a complete graph G = (V;E), a nonnegative edge-weight function c and an

integer 2 � p � jV j. The problem is to �nd a placement P (i.e., a vertex subset of size p),

that minimizes Dc(P ).

The minimum average distance placement, (Min-Sum), and minimum variance

placement problem, (Min-Var), are de�ned analogously. We now extend the above de�-

nition to bicriteria compact location problems.

De�nition 2.2 An instance of a diameter constrained minimum diameter placement prob-

lem (Min-Dia, Dia)is given by a complete graph G = (V;E), two nonnegative edge-weight

functions c and d, an integer 2 � p � jV j and a positive number B. The goal is to �nd a

placement P which minimizes Dc(P ) subject to the constraint Dd(P ) � B.

6In [AI+91], the scaling factor used to de�ne variance is 1
p
. We use 2

p(p�1)
for reasons of uniformity.
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The analogous versions for the various combinations of objectives D�, S� and Q� are de�ned

similarly.

Given a problem �, we use TI-� to denote the problem � restricted to graphs in which

both the edge weight functions satisfy the triangle inequality. We will see that the triangle

inequality plays an important role in determining the approximability of the compact location

problems de�ned above.

One of the goals of our work is to �nd good approximation algorithms for several compact

location problems introduced here. By an approximation algorithm (heuristic) we mean a

polynomial time algorithm which produces feasible, but not necessarily optimal, solutions.

A relative approximation algorithm guarantees a solution which is within a multiplicative

constant K of the optimal value for every instance of the problem. The multiplicative

constant K is referred to as the performance guarantee provided by the algorithm. This

paper is concerned with the study of relative approximation algorithms for the placement

problems de�ned above.

As shown in Section 5, unless P = NP, for several bicriteria problems considered here,

it is not possible to strictly satisfy the constraint on the d-distances. This motivates the

de�nition of a slightly relaxed version of the performance of an approximation algorithm.

Formally, let � be a bicriteria compact location problem. An (�; �)-approximation algorithm

for � (or an algorithm with a performance of (�; �)) is a polynomial-time algorithm, which

for any instance of � does one of the following:

(a) It produces a solution within � times the optimal value with respect to the �rst distance

function c, violating the constraint with respect to the second distance function d by a

factor of at most �.

(b) It returns the information that no feasible placement exists at all.

Notice that if there is no feasible placement but there is a placement violating the constraint

by a factor of at most �, an (�; �)-approximation algorithm has the choice of performing

either action (a) or (b).

We close this section with some basic de�nitions and an important observation. The set of

neighbors of a vertex v in G, denoted by N(v;G), is de�ned by N(v;G) := fw : (v; w) 2 Eg.

The degree deg(v;G) of v in G is the number of vertices in N(v;G). For a subset V 0 � V of

nodes, we denote by G[V 0] the subgraph of G induced by V 0. Given a graph G = (V;E), the

graph G2 = (V;E2) is de�ned by (u; v) 2 E2 if and only if there is a path in G between u and

v consisting of at most two edges. Following [HS86], the bottleneck graph bottleneck(G; �;M)

of G = (V;E) with respect to � and a bound M is de�ned by

bottleneck(G; �;M) := (V;E0); where E0 := fe 2 E : �(e) �Mg:
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Observation 2.3 Let H be a subgraph of the complete graph G = (V;E) with edge-weights

c(e) (e 2 E) satisfying the triangle inequality. Then the weight of the heaviest edge in H2 is

at most twice the weight of the heaviest edge in H.

3 Summary of results

Here, we study the complexity and approximability of a number of unicriterion and bicriteria

compact location problems. One contribution of this paper is a general framework that

leads to e�cient approximation algorithms with provable performance guarantees for several

compact location problems.

In Section 5, we show that the compact location problems studied in this paper are

NP-hard. We establish hardness results for the unicriterion compact location problems (see

De�nition 2.1) which also extend, with appropriate modi�cations, to bicriteria versions. Next,

we prove that, in general, obtaining placements that are near-optimal is NP-hard. For the

bicriteria versions these negative results continue to hold, even when we allow the budget

constraint on the second cost function to be violated by a constant factor and one of the cost

functions satis�es the triangle inequality.

Given these hardness results, we focus our attention on graphs in which both the weight

functions satisfy the triangle inequality. In the past, a substantial amount of work has

been carried out in investigating the approximability of problems arising in network de-

sign and location theory when edge weights satisfy the triangle inequality (for example see

[RSL77, HS86, RRT94]). We refer the reader to the paper by Bern and Eppstein [BE95]

for a comprehensive survey of other geometric location problems. We obtain the following

approximability results.

1. We provide an e�cient generic method for approximating the unicriterion compact

location problems. The procedure runs O(n2) in time. For the (Min-Dia) problem, the

algorithm provides a performance guarantee of 2. We also observe that no polynomial

time heuristic for the (Min-Dia) problem can provide a better performance guarantee

unless P = NP. For the (Min-Sum) and (Min-Var) problems, our heuristics provide

performance guarantees of 2� 2=p and 4� 6=p respectively.

2. We provide a polynomial time approximation algorithm for TI-(Min-Dia, Dia) with

performance guarantee (2; 2). Furthermore, we show that unless P 6= NP, no polynomial

time approximation algorithm can provide a performance guarantee of (2 � "; 2) or

(2; 2� "), for any " > 0.

3. We give a polynomial time approximation algorithm for TI-(Min-Sum, Dia) with
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performance guarantee (2 � 2
p ; 2). We also show that, unless P 6= NP, no polynomial

time approximation algorithm can provide a performance guarantee of (�; 2 � "), for

any � � 1; " > 0.

4. We provide a polynomial time approximation algorithm for TI-(Min-Dia, Sum) with

performance guarantee (2; 2 � 2
p). Furthermore, we show that unless P 6= NP, no

polynomial time approximation algorithm can provide a performance guarantee of (2�

"; �), for any � � 1; " > 0.

5. For all  > 0, we give a polynomial time approximation algorithm for TI-(Min-Sum,

Sum) with performance guarantee ((1+)(2� 2
p); (1+

1
 )(2�

2
p)). We also show that this

algorithm can be implemented to run in time O(n2 log n) using an elegant technique of

Megiddo [Meg83].

All the above approximation results can be extended to the case when there weights on

vertices. They can also be extended to the case where we are given a subset D � V that

must be included in the solution. We discuss these extensions in Section 9.

Our results are based on two basic techniques. The �rst is a combination of two ideas,

namely the power of graphs approach of Hochbaum and Shmoys [HS86] and the local search

approach for approximating single criteria compact location problems introduced in [KN+95a].

The second is an application of a parametric search technique similar to the one discussed in

[MR+95] for network design problems.

4 Related work

In contrast to the above NP-hardness results which hold for general distance matrices, geo-

metric versions of (Min-Dia) and (Min-Var) were shown to be solvable in polynomial time

in [AI+91]. In the geometric versions of these problems, the nodes are points in space and

the distance between a pair of nodes is their Euclidean distance. For points in the plane,

[AI+91] contains an O(p2:5n log p + n logn) algorithm for the (Min-Dia) problem and an

O(p2n logn) algorithm for the (Min-Var) problem, and it is observed that these algorithms

extend to higher dimensions. These algorithms are based on the construction of pth order

Voronoi diagrams [Lee82, PS85].

Problems involving the placement of p facilities so as to minimize suitable cost measures

have been studied extensively in the literature (see [BE95, AI+91, DL+93, KP93, EE94]

and the references cited therein). These problems can roughly be divided into two main

categories. The �rst category of problems involves selecting a set of p facilities so as to

minimize (or maximize) the cost (distance) from the unselected sites to the selected sites.

Problems that can be cast in this framework include the p-center problem [HS86, DF85],
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the p-cluster problem [HS86, FG88, Go85] and the p-median problem [LV92, MF90]. The

second category consists of problems where the goal is to select p facilities so as to optimize

a certain cost measure de�ned on the set of selected facilities. Problems that can be cast in

this framework include the p-dispersion problem [RRT94, Ta91, EN89], and the k-minimum

spanning tree problem [RR+94, GH94, AA+94, BCV95, ZL93].

In contrast, not much work has been done in �nding optimal location of facilities when

there is more than one objective. A notable work in this direction is by Bar-Ilan, Kortsarz

and Peleg [BKP93] who considered the problem of assigning network centers, with a bound

imposed on the number of nodes that any center can service. We refer the reader to [MR+95]

for a survey of the work done in the area of algorithms for bicriteria network design and

location theory problems.

5 Hardness results

In this section, we prove our non-approximability results. The hardness results are �rst

established for the unicriterion versions of compact location problems. Then we show how

these hardness results imply the hardness of bicriteria versions of compact location problems.

Several of our hardness results use recent hardness results concerning approximability of the

MAX-CLIQUE problem. We recall the de�nition and the related non-approximability result

for the sake of completeness.

De�nition 5.1 An instance of the CLIQUE problem consists of an undirected graph G =

(V;E) and an integer J � jV j. The question is whether there exists a clique of size J in

G; that is, whether there exist J vertices S = fv1; : : : ; vJg such that 8vi; vk 2 S we have

(vi; vk) 2 E.

The optimization version of the problem, denoted by MAX-CLIQUE, is to �nd a clique of

maximum size in G.

Recently, using a new characterization of NP in terms of probabilistically checkable proof

systems, it has been shown that the MAX CLIQUE problem cannot be e�ciently approxi-

mated. We state the most recent result obtained by Bellare and Sudan [BS94].

Theorem 5.2 Unless P = NP, for all " > 0 the problem MAX-CLIQUE does not have a

polynomial time approximation algorithm with performance guarantee jV j1=6�".

5.1 Unicriterion Problems

Proposition 5.3 The problems (Min-Dia), (Min-Sum) and (Min-Var) are NP-hard, even

when the distances satisfy the triangle inequality.
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Proof: We will sketch the NP-hardness proofs for the (Min-Dia) and (Min-Sum) problems.

The proof for (Min-Var) is similar.

We use a reduction from CLIQUE. Given an instance of the CLIQUE problem given by a

graph G = (V;E) and an integer J , construct an instance of (Min-Dia) consisting of the

complete graph on the node set V . For nodes x and y in V , let c(x; y) = 1 if fx; yg 2 E

and let c(x; y) = 2 otherwise. Clearly, the distances satisfy the triangle inequality. It is

straightforward to verify that G has a clique of size J if and only if we can place J facilities

such that the diameter of the placement is equal to 1.

The same construction as before works for (Min-Sum). If G has a clique of size J , then

the nodes which form this clique constitute an optimal solution for the (Min-Sum) instance

of objective function value J(J � 1)=2. If G does not have a clique of size J , then any place-

ment of J nodes has cost at least J(J � 1)=2 + 1.

The proof of the last proposition also shows that the existence of a polynomial time

algorithm for TI-(Min-Dia) with a performance of 2�" for some " > 0 implies that P = NP.

If the distances are not required to satisfy the triangle inequality, we can replace the distance

2 in the above construction by any polynomial time computable function f . This shows that

an approximation algorithm with a performance guarantee of f(jV j) for any of the problems

(Min-Dia), (Min-Sum) and (Min-Var) can be used to decide CLIQUE. We thus obtain the

following results.

Proposition 5.4 If the distances are not required to satisfy the triangle inequality, then

unless P = NP, for any polynomial time computable function f there is no polynomial time

approximation algorithm for any of the problems (Min-Dia), (Min-Sum), (Min-Var) with

a performance of f(jV j).

For any " > 0, TI-(Min-Dia) is NP-hard to approximate within a factor of 2� ".

The NP-hardness of the unicriterion compact location problems naturally implies the

hardness of the bicriteria versions. Moreover, one can establish even stronger hardness results,

as shown below.

Lemma 5.5 Unless P = NP, for any "; "0 > 0, there can be no polynomial time algorithm A

which given an arbitrary instance of TI-(Min-Dia, Dia),

� either returns a subset S � V of at least 2p

jV j1=6�"0
nodes satisfying Dd(S) � (2� ")B,

� or provides the information that a placement of p nodes having d-diameter of at most

B does not exist.
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Proof: Let I 0 be an arbitrary instance of MAX-CLIQUE, given by a graph G0 = (V 0; E0).

Without loss of generality we can assume that E0 6= ;. We will give a many-one Turing

reduction to the problem TI-(Min-Dia, Dia).

For each 2 � k � jV j, we construct an instance I(k) of TI-(Min-Dia, Dia) as follows: Let

G(k) = (V 0; E) (E = f(u; v) : u; v 2 V; u 6= vg) and de�ne c(k); d(k) : E ! IN by c(k)(e) := 1

for all e 2 E and

d(k)(e) :=

(
1 if e 2 E0

2 otherwise.

It is trivial to see that both weight functions obey the triangle inequality. We let B(k) := 1

and p(k) := k. Notice that the size of an instance I(k) is still polynomial in the size of I 0,

and that we have constructed only polynomially many (namely, O(jV j)) instances. Now

consider an instance I(k). Note that any placement P of p(k) = k nodes that has diameter

Dd(k)(P ) � (2 � ")B = (2 � ") must have diameter 1 and, thus must form a clique in the

original graph G0.

Assume that the original graph G0 has a clique C of size p(k) = k. Then this clique will

satisfy Dc(k)(C) = Dd(k)(C) = 1 = B(k). By our assumption, the algorithm A must return

a set S of at least 2p

jV j1=6�"
0 nodes with d-diameter at most (2 � ")B = (2 � ") < 2. Thus,

as noted above, the algorithm must �nd a placement of diameter 1, and this set will form a

clique in the original graph G0.

If there is no clique of size p(k) = k in G0, any placement P of p(k) = k nodes in G0

must include at least one edge e of length d(k)(e) = 2 > (2 � "). Now, according to our

assumptions about A, the algorithm has the choice of either returning a set of size at least
2p

jV j1=6�"
0 that will form a clique in the original graph or providing the information that there

is no placement P of diameter at most B = 1.

Thus, the output of the algorithm A can be used to either obtain the information that

G0 does not contain a clique of size p(k) = k or that G0 does have a clique of size at least
2p

jV j1=6�"
0 .

Now, we run A for all the instances I(k) (2 � k � jV j). Since the size of each instance I(k)

is polynomial in the size of I 0 and we only have O(jV j) instances, this will result in an overall

polynomial time algorithm, according to our assumptions about A. Let m := maxfk : A

returns a set S of diameter 1g. Then, by our observations from above, we can conclude

that G0 has a clique of size at least 2m
jV j1=6�"0

and that there is no clique of size m + 1 in

G0. Hence, we can approximate the maximum clique number of G0 by a factor of at most
m+1
2m � jV j

1=6�"0 � jV j1=6�"
0
. By the results in [BS94] (Theorem 5.2), this would imply that

P = NP.

9



Again, replacing the factor 2 by a suitable polynomial time computable function f (e.g.

f = �(2poly(jV j)), which given an input length of 
(jV j) is polynomial time computable), it

can be seen that, if the triangle inequality is not required to hold, there can be no polynomial

time approximation with performance ratio f(jV j) for either the optimal function value or

the constraint (modulo P = NP). Thus, we obtain:

Theorem 5.6 Unless P = NP, for all " > 0; "0 > 0 the problem TI-(Min-Dia, Dia)

does not have a polynomial time approximation algorithm that �nds a placement of at least

2p=jV j1=6�"
0
facilities and which has a performance guarantee of (�; 2� ") or (2� "; �).

Unless P = NP, for any polynomial time computable functions f; g, if the c-costs and

d-costs do not satisfy triangle inequality, then the problem (Min-Dia, Dia) does not have a

polynomial time (f(jV j); g(jV j))-approximation algorithm.

The results of Lemma 5.5 also give a slightly stronger hardness result than the one stated

in the previous theorem. Namely, we can conclude that, for any �xed �; � � 1, unless both

the c-costs and the d-costs satisfy the triangle inequality, we cannot obtain a polynomial time

(�; �)-approximation algorithm for the problem (Min-Dia, Dia). By essentially the same

arguments, we obtain the following results.

Theorem 5.7 Unless P = NP, for any �xed �; � � 1, if the c-costs or the d-costs do not

satisfy triangle inequality, the problems (Min-Sum, Dia), (Min-Dia, Sum), and (Min-Sum,

Sum) do not have polynomial time (�; �)-approximation algorithms.

Unless P = NP, for any �xed � � 1 and " > 0, the problem TI-(Min-Sum, Dia) does

not have a polynomial time (�; 2 � ")-approximation algorithm.

Unless P = NP, for all �xed " > 0 and � � 1, for the problem TI-(Min-Dia, Sum) does

not have a polynomial time (2� "; �)-approximation algorithm.

6 Unicriterion compact location problems

In this section, we present our approximation algorithms for the unicriterion versions of com-

pact location problems. We begin (Section 6.1) by discussing our approximation algorithm

for the minimum variance problem and then discuss (Section 6.2) similar heuristics for the

minimum sum and minimum diameter problems. We also present (Section 6.3) a compar-

ison of solutions under the three objectives, to demonstrate the orthogonal nature of the

objectives.
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procedure Gen-Alg(G = (V;E);Mc)

Comment: G = (V;E) denotes the graph with edge and/or node weights. Mc is a function
that returns the cost of a given placement.

1. if jV j < p then return \certi�cate of failure"
2. else

begin

(a) Solution  ; and Value  1.
(b) for each node v 2 V do

begin

i. Find N(v) = fv1; : : : ; vp�1g � V � fvg such that N(v) contains
p� 1 nodes in V � fvg closest to v.

ii. P (v) = N(v) [ fvg.
iii. t  Mc(P (v)).
iv. if t < Value then Solution  P (v) and Value  t.

end

end

3. output Solution and Value.

Figure 1: Generic Algorithm

6.1 Approximating minimum variance

Recall that the goal of (Min-Var) problem is to �nd a placement P for which Qc(P ), the

sum of the squares of the distances between the nodes in the placement, is minimized.

Our heuristic for the (Min-Var) problem, denoted by Heur-(Min-Var), consists merely

of a call to the generic procedure of Figure 1 with G as the graph corresponding to the

problem instance andMc := Q̂c, where for a placement P (v) = fv; v1; : : : ; vp�1g consisting

of a node v and its p � 1 nearest neighbors N(v) = fv1; : : : ; vp�1g with respect to c, the

function Q̂c is de�ned by

Q̂c(P (v)) := Q̂c(fvg [N(v)) :=
p�1X
i=1

[c(v; vi)]
2 : (1)

Although the generic algorithm in Figure 1 is simple, it is quite powerful. We now establish

the performance of the algorithm. This proof requires an extended form of the triangle

inequality given by the following lemma.

Lemma 6.1 If the distances in a network satisfy the triangle inequality, then for all nodes

x; y; z,

[c(x; z)]2 � 2
�
[c(x; y)]2 + [c(y; z)]2

�
:

11



Proof: By the triangle inequality, we have c(x; z) � c(x; y)+ c(y; z). By squaring both sides

we obtain

[c(x; z)]2 � [c(x; y)]2 + [c(y; z)]2 + 2c(x; y)c(y; z): (2)

Moreover, we obtain from

0 � (c(x; y) � c(y; z))2 = [c(x; y)]2 + [c(y; z)]2 � 2c(x; y)c(y; z) (3)

that

2c(x; y)c(y; z) � [c(x; y)]2 + [c(y; z)]2 : (4)

Thus by (2) and (4)

[c(x; z)]2 � [c(x; y)]2 + [c(y; z)]2 + 2c(x; y)c(y; z) � 2
�
[c(x; y)]2 + [c(y; z)]2

�
(5)

which proves the lemma.

Lemma 6.2 Let v 2 V be an arbitrary node and let N(v) = fw1; : : : ; wp�1g be the set of

nearest neighbors of v in V � fvg with respect to c. De�ne

Qv := Q̂c(fvg [N(v)) =
X

w2N(v)

[c(v; w)]2 : (6)

Then Qc(fvg [N(v)) � (2p� 3)Qv.

Proof:

Qc(fvg [N(v)) =
X

w2N(v)[fvg

[c(v; w)]2 +
X

u;w2N(v)[fvg

u6=w

[c(u;w)]2

� Qv +
X

u;w2N(v)[fvg

u6=w

2
�
[c(u; v)]2 + [c(v; w)]2

�
(by Lemma 6:1)

= Qv +
X

w2N(v)[fvg

X
u2N(v)[fv;wg

2 [c(v; w)]2

= Qv + 2(p� 2)
X

w2N(v)[fvg

[c(v; w)]2

= Qv + 2(p� 2)Qv

= (2p� 3)Qv

12



Lemma 6.3 Let I be an instance of (Min-Var). Let P � � V be an optimal placement and

let P � V be the placement produced by Heur-(Min-Var) respectively for the instance I.

Then Qc(P )=Qc(P
�) � 4� 6=p.

Proof: For each node w 2 P �, let

Rw =
X
v2P �

[c(v; w)]2 : (7)

We have

Qc(P
�) =

1

2

X
w2P �

Rw: (8)

Choose v 2 P � such that

Rv = min
w2P �

Rw: (9)

Then

Qc(P
�) =

1

2

X
w2P �

Rw �
1

2

X
w2P �

Rv =
p

2
Rv: (10)

This yields

Rv �
2

p
Q(P �): (11)

Consider the iteration of the for loop (Step 2(b) of Figure 1), where the node v chosen above

is considered by the heuristic. Let N(v) = fw1; : : : ; wp�1g be the set of nearest neighbors of

v in V � fvg chosen in that iteration. By de�nition of Rv and Qv we have

Qv =
X

w2N(v)

[c(v; w)]2 �
X
w2P �

[c(v; w)]2 = Rv; (12)

because N(v) is chosen as the set of p� 1 nearest neighbors of v. Then

(2p� 3)Qv � (2p� 3)Rv (by Equation (12)) (13)

� 2

�
2p� 3

p

�
Qc(P

�) (by Equation (11)) (14)

=

�
4�

6

p

�
Qc(P

�): (15)

By construction, our algorithm will choose a node ~v with minimum value Q~v = Q̂c(f~vg [

N(~v)). Thus Q~v � Qv and we get

Q(N(~v) [ f~vg) � (2p� 3)Q~v (by Lemma 6:2)

� (2p� 3)Qv

�

�
4�

6

p

�
Qc(P

�) (by Equation (15)):

This completes the proof.
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Running Time

We now address the running time of our algorithm. Let n := jV j be the number of nodes

in the graph G. Then the number m of edges is m = n(n�1)
2 = �(n2). The main e�ort of

the algorithm is in the loop in Step 2(b). For each node v we must determine the (p � 1)

nearest neighbors with respect to the c distance function. This can be done in O(n+ p) time

as follows. We �rst use a linear time selection algorithm (see e.g. [CLR90]) to �nd the node

w with the (p� 1)st smallest distance from v. Then, by performing one linear pass over the

O(n) neighbors of v and comparing their distance to c(v; w), we can then extract the p� 1

nearest neighbors of v in O(n+ p) time.

Then, the algorithm computes the sum Q̂c(P (v)) =
Pp�1

i=1 [c(v; vi)]
2 for each of the n

placements P (v) = fv; v1; : : : ; vp�1g. Evaluating Q̂c for one placement needs O(p) time.

Choosing the best placement P (v) (with respect to Q̂c) can then be accomplished in O(n)

time. This results in an overall time of O(n2 + np) = O(n2).

Theorem 6.4 The generic algorithm, called with Mc := Q̂c is an approximation algorithm

for (Min-Var) with a performance guarantee of 4� 6=p and a running time of O(n2).

6.2 Approximating TI-(Min-Sum) and TI-(Min-Dia)

We are going to establish two lemmas which enable us to use measures that can be computed

faster than Sc and Dc.

Lemma 6.5 Let v 2 V be an arbitrary node and let N(v) = fw1; : : : ; wp�1g be the set of

nearest neighbors of v in V � fvg with respect to c. De�ne

Sv := Ŝc(fvg [N(v)) :=
X

w2N(v)

c(v; w): (16)

and

Dv := D̂c(fvg [N(v)) := max
w2N(v)

c(v; w): (17)

Then Sc(fvg [N(v)) � (p� 1)Sv and Dc(fvg [N(v)) � 2Dv.

Proof: We �rst prove the bound with respect to Sc. Let w 2 N(v) be arbitrary. Then

X
u2N(v)[fvgnfwg

c(w; u) = c(w; v) +
X

u2N(v)nfwg

c(w; u)

� c(w; v) +
X

u2N(v)nfwg

(c(w; v) + c(v; u))
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= (p� 1)c(w; v) +
X

u2N(v)nfwg

c(v; u)

= (p� 2)c(v; w) +
X

u2N(v)

c(v; u)

= (p� 2)c(v; w) + Sv: (18)

Now using (18) we obtain

Sc(P (v)) = Sc(N(v) [ fvg) (19)

=
1

2

0
@ X
u2N(v)

c(v; u) +
X

w2N(v)

X
u2N(v)[fvgnfwg

c(w; u)

1
A

=
1

2
Sv +

1

2

X
w2N(v)

X
u2N(v)[fvgnfwg

c(w; u)

(18)
�

1

2
Sv +

1

2

X
w2N(v)

((p� 2)c(v; w) + Sv)

=
1

2
Sv +

p� 2

2
Sv +

p� 1

2
Sv

= (p� 1)Sv :

This proves the �rst part of the lemma. For the second part, observe that P (v) will form

a clique in the square of the bottleneck graph bottleneck(G; c;Dv). The claim now follows

immediately from Observation 2.3.

Using the above lemma and following a proof outline similar to those of Lemma 6.5 and

Lemma 6.3, we obtain:

Theorem 6.6 Denote by Heur-(Min-Sum) and Heur-(Min-Dia) the algorithms resulting by

setting Mc := Ŝc and Mc := D̂c respectively in the generic procedure shown in Figure 1.

Then Heur-(Min-Sum) as applied to TI-(Min-Sum) has a performance of 2�2=p. Heur-

(Min-Dia) is an approximation algorithm for TI-(Min-Dia)for with a performance of 2.

Both algorithms have running time O(n2).

We will prove more general versions of Theorem 6.6 in Sections 7 and 8.

6.3 Comparisons of solutions under the three objectives

We presented heuristics for the unicriterion compact location problems, which produce near-

optimal solutions under the three objectives, namely minimum diameter, minimum average
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distance and minimum variance. This section is devoted to a comparison of the three objec-

tives. We present problem instances to show that a solution which is optimal with respect

to one objective can be arbitrarily poor with respect to another objective, even when the

triangle inequality holds. These examples demonstrate that the objectives are in some sense

orthogonal.

Our examples use suitable combinations of the following sets of nodes with distance

functions. (The \combination" operation will be speci�ed after the de�nitions of these sets.)

The distance functions are symmetric and it is easy to verify that they satisfy the triangle

inequality. In the following speci�cations, � is an arbitrarily small positive quantity.

1. Let X = fx1; x2; : : : ; xpg be a set of nodes with c(xi; xj) = 1, 1 � i < j � p� 1.

2. Let Y = fy0; y1; y2; : : : ; yp�1g with c(y0; yi) = 1+ � for 1 � i � (p� 1) and c(yi; yj) = �
for 1 � i < j � (p� 1).

3. Let Z = fz0; z1; z2; : : : ; zp�1g with c(z0; zi) = (p � 1)=2 for 1 � i � (p � 1) and
c(zi; zj) = � for 1 � i < j � (p� 1).

4. Let R = fr0; r1; : : : ; rp�1g with c(r0; ri) =
p
p=2� 1 for 1 � i � (p�1) and c(ri; rj) = �

for 1 � i < j � (p� 1).

5. Let W = fw0; w1; w2; : : : ; wp�1g with c(w0; wi) = p=2 � 1 for 1 � i � (p � 1) and
c(wi; wj) = � for 1 � i < j � (p� 1).

6. Let T = ft0; t1; t2; : : : ; tp�1g with c(t0; ti) =
p
p=2 + 1 for 1 � i � (p�1) and c(ti; tj) = �

for 1 � i < j � (p� 1).

For each set � de�ned above, Table 1 gives the values of Dc(�), Sc(�) and Qc(�). We

will refer to this table several times in the following discussion.

For disjoint sets of nodes � and � with distance functions c� and c� respectively, de�ne

COMBINE(�; �) as the graph with the node set � [ � and the distance function c�[� given

by

c�[�(x; y) = c�(x; y) if x; y 2 �
= c�(x; y) if x; y 2 �
= M if x 2 � and y 2 �,

where M is a quantity which is much larger than any of the distances in � and �. It is easy

to verify that if c� and c� satisfy the triangle inequality, then so does c�[� .

We use the sets and the COMBINE operation de�ned above to create instances that bring

out the orthogonality of the measures. The reader should bear in mind that in each case,

the number of facilities to be placed is p and that � can be made arbitrarily small.
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Set � Dc(�) Sc(�) Qc(�)

X 1 p(p� 1)=2 p(p� 1)=2

Y 1 + � (p� 1)((1 + �) + (p� 2)�=2) (p� 1)((1 + �)2 + (p� 2)�2=2)

Z (p� 1)=2 (p� 1)((p� 1)=2 + (p� 2)�=2) (p� 1)((p � 1)2=4 + (p� 2)�2=2)

R
p
p=2� 1 (p� 1)(

p
p=2� 1 + (p� 2)�=2) (p� 1)((p=2 � 1) + (p� 2)�2=2)

W p=2� 1 (p� 1)((p=2 � 1) + (p� 2)�=2) (p� 1)((p=2 � 1)2 + (p� 2)�2=2)

T
p
p=2 + 1 (p� 1)(

p
p=2 + 1 + (p� 2)�=2) (p� 1)((p=2 + 1) + (p� 2)�2=2)

Table 1: Comparison of the Three Objectives

1. Diameter and Sum of the distances:

Consider the graph COMBINE(X;Y ). For this graph, the set X is the optimal place-

ment with respect to diameter while the set Y is the optimal placement with respect

to sum of the distances. From Table 1, it is easy to see that Sc(X) is arbitrarily worse

than Sc(Y ). Thus, for this graph, the set which is optimal with respect to diameter is

arbitrarily poor with respect to sum of the distances.

2. Diameter and Sum of the squares of the distances:

Here also the graph COMBINE(X;Y ) su�ces because X is optimal with respect to

diameter and Y is optimal with respect to sum of the squares of the distances. From

Table 1, it is seen that Qc(X) is arbitrarily worse than Qc(Y ).

3. Sum of the distances and Diameter:

For this case, we consider the graph COMBINE(X;Z). The set Z minimizes the sum

of the distances while X minimizes the diameter. Observe from Table 1 that Dc(Z) is

arbitrarily worse than Dc(X).

4. Sum of the squares of the distances and Diameter:

Consider the graph COMBINE(X;R). The set R minimizes the sum of the squares of

the distances while X minimizes the diameter. Observe from Table 1 that Dc(R) is

arbitrarily worse than Dc(X).

5. Sum of the distances and Sum of the squares of the distances:

Consider the graph COMBINE(X;W ). The set W minimizes the sum of the distances
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while X minimizes the sum of the squares of the distances. Observe from Table 1 that

Qc(W ) is arbitrarily worse than Qc(X).

6. Sum of the squares of the distances and Sum of the distances:

Consider the graph COMBINE(X;T ). The set X minimizes the sum of the squares of

the distances while T minimizes the sum of the distances. Observe from Table 1 that

Sc(X) is arbitrarily worse than Sc(T ).

7 Heuristics for diameter constrained problems

In this section, we discuss our approximation algorithms for bicriteria compact location

problems when the budget constraint is on the diameter. We begin with a brief discussion

of the basic technique (Section 7.1). This is followed by our approximation algorithms for

TI-(Min-Sum, Dia) (Section 7.2) and TI-(Min-Dia, Dia) (Section 7.3).

7.1 Basic technique

We discuss the basic technique used in approximating the diameter constrained compact

location problems. Hochbaum and Shmoys [HS86] introduced a general approach for ap-

proximating a number of bottleneck problems when the costs satisfy triangle inequality. We

combine this approach with the local search heuristic for compact location problem devel-

oped in [KN+95a] to obtain our approximation algorithms for diameter constrained compact

location problems.

To illustrate our ideas, consider the problem TI-(Min-Sum, Dia). Let B be the bound

on the diameter of the placement with respect to the d-cost. It is clear that in the subgraph

induced by an optimal placement no edge has d-cost more than B. Thus we can prune all the

edges in the graph with d-costs more than B. Call the resulting graph G0. Since �nding an

optimal placement that minimizes the the sum of distances with respect to c-cost is \hard"

even in the modi�ed graph, we resort to �nding a near optimal placement. We �nd a near

optimal placement in G0 with respect to the c-costs. This placement will turn into a clique in

the square graph (G0)2. Because the edge weights satisfy triangle inequality, it follows that

the placement does not violate the constraint by a factor of more than 2.

7.2 Approximating TI-(Min-Sum, Dia)

We present an approximation algorithm for the problem TI-(Min-Sum, Dia) that provides

a performance guarantee of (2� 2=p; 2). The algorithm is shown in Figure 2, where the cost

measureMc corresponds to Ŝc, de�ned in (16).
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Procedure HEUR-FOR-DIA-CONSTRAINT

1 G0 := bottleneck(G; d;B)
2 Vcand := fv 2 G

0 : deg(v;G0) � p� 1g
3 if Vcand = ; then return \certi�cate of failure"
4 Let best := +1
5 Let Pbest := ;
6 for each v 2 Vcand do
7 Let N(v;G0) = fw1; : : : ; wrg with c(v; w1) � � � � � c(v; wr)
8 Let P (v) := fv; w1; : : : ; wp�1g
9 ifMc(P (v)) < best then Pbest := P (v)
10 output Pbest

Figure 2: Details of the heuristic TI-(Min-Sum, Dia).

Performance guarantee

We will show that a placement returned by the algorithm will be almost feasible in the sense

that it violates the diameter constraint by a factor of at most 2.

Lemma 7.1 Any placement considered by the algorithm in Step 8 has d-diameter at most

2B.

Proof: Observe that any placement P (v) which is considered by the algorithm consists of

a vertex v and p � 1 vertices w1; : : : ; wp�1 that are adjacent to v in the bottleneck graph

G0 := bottleneck(G; d;B), which does not contain edges of d-weight greater than B. The

placement will form a clique a clique in (G0)2. By Observation 2.3 all the edges between the

vertices in this clique have d-weight at most 2B. In other words, the d-diameter of P (v) is

at most 2B.

As an immediate consequence of Lemma 7.1 we obtain the following corollary.

Corollary 7.2 If the algorithm returns a placement P (i.e., the algorithm does not report

that that no feasible solution exists), then the d-diameter of P is at most 2B.

We are now ready to establish the performance of the algorithm in Figure 2.

Lemma 7.3 Algorithm HEUR-FOR-DIA-CONSTRAINT called with Mc := Ŝc has a perfor-

mance of (2� 2=p; 2).

Proof: By Corollary 7.2 we know that any solution output by the algorithm will violate the

constraint on the d-diameter by a factor of at most 2. Assume that the algorithm informs
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about the infeasibility of an instance in Step 3. Then, indeed, no feasible solution to the

instance can exist, since any feasible solution with d-diameter at most B will form a clique

in the bottleneck graph G0. In particular there will be at least p nodes of degree p or greater

in G0 and Vcand can not be empty.

It remains to show that for any instance of TI-(Min-Sum, Dia) with a nonempty set of

feasible solutions, the algorithm will �nd a good placement with respect to the objective Sc.

Consider an optimal solution P � such that Dd(P
�) � B and let OPT := Sc(P

�) be

the optimal objective function value. By de�nition, this placement forms a clique of size

p in G0 := bottleneck(G; d;B). Hence, for any node v 2 P � we have jN(v;G0)j � p and

P � � Vcand.

De�ne for each node v 2 P �:

Rv :=
X
w2P�

w 6=v

c(v; w):

We have Sc(P
�) = 1

2

P
v2P � Rv. Now let v 2 P � be so that Rv is a minimum among all nodes

in P �. Then clearly

OPT = Sc(P
�) �

p

2
Rv: (20)

As mentioned earlier, v 2 Vcand. Consider the step of the algorithm in which it examines v.

Let N(v) := P (v) n fvg denote the set of p� 1 nearest neighbors of v in G0 with respect to

c. Then we have

Sv :=
X

w2N(v)
w 6=v

c(v; w) � Rv �
2

p
OPT: (21)

by de�nition of N(v) as the set of nearest neighbors. By Lemma 6.5 we have

Sc(P (v)) � (p� 1)Sv
(21)
� (2� 2=p)OPT:

As the algorithm chooses the placement Pbest with the least value of Ŝc, the claimed perfor-

mance guarantee follows.

Running Time

Let n := jV j be the number of nodes in the graph G. Then the number m of edges is

m = n(n�1)
2 = �(n2). Thus, the bottleneck graph G0 in Step 1 of the algorithm can be

computed in time O(m) by simply inspecting the weight d(e) for each edge e 2 E. The set of

candidate nodes Vcand can then be determined in O(n) time. Now, using the same analysis

as in Section 6 for the generic algorithm, it now follows that the total time complexity of
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Algorithm HEUR-FOR-DIA-CONSTRAINT is O(n2+np) = O(n2). We summarize our results

in the following theorem.

Theorem 7.4 Algorithm HEUR-FOR-DIA-CONSTRAINT called withMc := Ŝc is an approx-

imation algorithm for TI-(Min-Sum, Dia) with a performance of (2� 2=p; 2) and a running

time of O(n2).

Lower bound example

We provide an example of an instance I of TI-(Min-Sum, Dia), where the (2 � 2=p; 2)-

performance of our heuristic is asymptotically tight. In this example, the node set V consists

of p+1 subsets B0; : : : ; Bp. The set B0 = fv1; : : : ; vpg forms an optimal placement of p nodes

and the distances between the nodes in B0 are c(vi; vj) = 1 and d(vi; vj) = 1. All other

sets Bi (i > 1) consist of p � 1 nodes and we have that c(u;w) = 2 � 2" and d(u;w) = 2

(u;w 2 Bi).

1

1� "

1� "

1� "

1� "

2� " 2� "

3� 2"
2� 2"

B0

2� 2" 2� 2" 2� 2"

B1 B2 B3 Bp

v2

v1

Figure 3: Lower Bound Example for the Heuristic for TI-(Min-Sum, Dia)

Let vi be any node in the optimum placement B0. we set c(vi; w) = 1�" and d(vi; w) = 1

for all w 2 Bi, while we let c(vi; w
0) = 2� " and d(vi; w) = 2 for all w0 2 Bj; j 6= i.

Finally, for each edge (u; v) such that u and v belong to distinct sets Bi, we set the

c(u; v) = 3 � 2" and d(u; v) = 2. It is easily veri�ed that the distances c and d obey the

triangle inequality. The instance I just described is illustrated in Figure 3.
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For the bound B := 1, the set B0 forms an optimum placement with objective function

value Sc(B0) =
p(p�1)

2 and diameter Dd(B0) = 1. In the �rst step, the algorithm calculates

the bottleneck graph G0 = bottleneck(G; d; 1). This graph now only contains the edges

between the nodes in B0 and the edges of the form (vi; w) with w 2 Bi. It is now easy to see

that Vcand = B0. For each node vi 2 B0 the set of p� 1 nearest neighbors consists of the set

Bi and Dd(fvig [Bi) = 2 = 2B. Moreover Sc(fvig [Bi) = (p� 1)(1� ") + (p�1)(p�2)
2 (2� 2")

and lim"!0
Sc(fvig[Bi)

Sc(B0)
= 2� 2=p.

7.3 Approximating TI-(Min-Dia, Dia)

Using the results from Section 6 in conjunction with the results in [MR+95] we can devise an

approximation algorithm with a performance guarantee (4; 4) for TI-(Min-Dia, Dia). Here,

we present an improved heuristic for this problem. This heuristic provides a performance

guarantee of (2; 2). In view of Theorem 5.6, this is the best approximation we can expect to

obtain in polynomial time.

The heuristic for approximating TI-(Min-Dia, Dia) is the same as HEUR-FOR-DIA-

CONSTRAINT given in Figure 2, except that the measureMc := D̂c, where D̂c is de�ned in

(17).

Performance guarantee and running time

Theorem 7.5 Algorithm HEUR-FOR-DIA-CONSTRAINT called withMc := D̂c (where D̂c is

de�ned in (17)) is an approximation algorithm for TI-(Min-Sum, Dia) with a performance

of (2; 2).

The proof of Theorem 7.5 is deferred until Section 9, where we will state and prove

an extension of this result (Theorem 9.3). It should be noted that the same running time

analysis as in the case of TI-(Min-Sum, Dia) shows that the algorithm runs in time O(n2).

Lower bound example

The lower bound example in Figure 3 can be used to show that the approximation ratio

indicated in Theorem 7.5 is tight for the heuristic. Again, the optimum placement consists

of the nodes in B0 which has both c- and d-cost equal to 1. The placement returned by the

heuristic is one of the sets fvig [Bi, which has c-cost equal to 2� 2" and d-cost equal to 2.
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8 Heuristics for sum constrained problems

In this section, we study approximation algorithms for bicriteria compact location problems

where the objective is to minimize either the diameter Dc or the sum of the distances Sc

subject to constraints of sum type.

8.1 Approximating TI-(Min-Dia, Sum)

An (�; �)-approximation algorithm for TI-(Min-Dia, Sum) can be constructed with the help

of a (�; �)-approximation algorithm A for TI-(Min-Dia, Dia) in the following way. Given

an instance of TI-(Min-Dia, Sum) with the bound B on the sum of the d-distances we do

the following: We �nd the minimum M 2 f c(e) : e 2 E g such that A as applied to the

instance I 0 of TI-(Min-Sum, Dia) with the bound B0 on the c-diameter set to M �nds a set

of nodes where the total sum of the distances between the nodes is at most �B.

After sorting the set f c(e) : e 2 E g in O(m logm) time, where m := jEj = n(n�1)
2 , we

can use binary search and obtain an approximation algorithm with a performance of (�; �)

for TI-(Min-Dia, Sum). This algorithm issues O(logm) = O(log n) calls to A.

Thus, taking into account our results from Section 7.2 we obtain an approximation algo-

rithm for TI-(Min-Sum, Sum) with the properties stated in the following theorem.

Theorem 8.1 There is an approximation algorithm for TI-(Min-Dia, Sum) with perfor-

mance of (2; 2� 2=p) and running time O(n2 log n).

Lower bound example

As a lower bound example take again the instance depicted in Figure 3 but interchange the

c- and d-costs and set the bound B to be p(p�1)
2 . It is easy to see that by choosing " > 0

small enough, the performance for this instance is arbitrarily close to (2; 2 � 2=p).

8.2 Approximating TI-(Min-Sum, Sum)

We proceed to present a heuristic for TI-(Min-Sum, Sum). The basic idea behind the

approximation algorithm is to use a parametric search technique to reduce the problem

to that of solving the minimum sum problem for a modi�ed weight function. Then, by

appropriate scaling and rounding techniques, this solution can be transformed back into a

near optimal solution for the original bicriteria problem.

The presentation of our approximation algorithm is organized as follows. We �rst present

our heuristic and show that it provides a performance guarantee of ((2� 2=p)(1 + 1=); (2�

2=p)(1 + )) for any �xed  > 0. We then show how to improve the running time of the

heuristic using an elegant technique due to Megiddo [Meg83].
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Procedure HEUR-FOR-(Min-Sum, Sum)

1 Use a binary search to �nd the smallest integer

M 2 I :=
h
0; p2maxf c(e) : e 2 E g

i

such that Sum-Test(T )=Yes.
2 if the binary search terminates with the information that there is no such integer

then output \There is no feasible solution" and stop
3 Let P be placement generated by Sum-Test(T )
4 if Sd(P ) > (2� 2=p)B then output \There is no feasible solution" else output P

Figure 4: Main procedure for TI-(Min-Sum, Sum).

Procedure Sum-Test(M)

1 Let � := M
B .

2 for each pair (v; w) of nodes de�ne the distance function h(v; w) by
h(v; w) := c(v; w) + �d(v; w).

3 Compute a (2�2=p)-approximation for the (Min-Sum) instance given by the graph
G the number p and distances h(e), e 2 E

4 Let PM be a set of p nodes with Sh(PM ) � (2� 2=p) � min
P�V
jP j=p

Sh(P ).

5 if Sh(PM ) � (2� 2=p)(1 + )M then output \Yes" else output \No".

Figure 5: Test procedure used for TI-(Min-Sum, Sum).

8.2.1 A exible but slow heuristic

The main procedure shown in Figure 4 uses the test procedure from Figure 5. Step 3 of the

main procedure, that is, computing a (2 � 2=p)-approximation for the constructed instance

of (Min-Sum) (i.e. minimizing Sh), can be done by using the unicriterion algorithm from

Section 6 for (Min-Sum) (or the algorithm from Section 7.2, where we set c := h, d := 1 and

B := 1). We also note that  is a �xed quantity that speci�es the accuracy requirement.

For a value of M let OPThM denote the sum of the distances of an optimal placement

of p nodes with respect to the distance function hM (v; w) := c(v; w) + M
B d(v; w) = c(v; w) +

�d(v; w); that is

OPThM = min
P�V
jP j=p

ShM (P ):

Then we have the following lemma:

Lemma 8.2 The function F (M) =
OPThM

M is monotonically nonincreasing on for M > 0.

Proof: Let M1 and M2 be given numbers with M1 < M2. Let P1 and P2 denote optimal

placements of p nodes under hM when M = M1 and M = M2 respectively. For i 2 f1; 2g,
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let Ci and Di denote the costs of placement Pi under c and d respectively. Thus, we have

that F (Mi) =
Ci
Mi

+ Di
B for i 2 f1; 2g.

Consider the cost under h of the placement P1 when M = M2. By the de�nition of C1

and D1, it follows that the cost of P1 is C1+
D1�M2

B . Thus the value of F (M2) is at most this

cost divided by M2 which is C1
M2

+ D1
B . This in turn is less than C1

M1
+ D1

B , since M1 < M2.

But C1
M1

+ D1
B is exactly F (M1), and hence F (M1) � F (M2).

The next corollary proves that the binary search in Algorithm HEUR-FOR-(Min-Sum,

Sum) can work correctly. Before we state and prove the corollary, observe that Step 4 of the

algorithm ensures that, if the algorithm outputs a placement, this placement will violate the

constraint on the sum of the d-distances by a factor of at most 2� 2=p. Thus, in the sequel

we can restrict ourselves to instances with nonempty set of feasible solutions. Given such

an instance, let OPT = Sc(P
�) denote the function value of an optimal placement P � of p

nodes. To simplify the analysis, we assume that OPT= is an integer. This can be enforced

by �rst scaling the cost function c so that all values are integers and then scaling again by .

Corollary 8.3 The test procedure Sum-Test returns \Yes" for all M > OPT=. Thus, the

binary search in Algorithm HEUR-FOR-(Min-Sum, Sum) works correctly and either �nds a

value M 0 � OPT= or provides the information that Sum-Test returns \No" for all values of

M .

Proof: We �rst show that the procedure will return \Yes" if called with M� = OPT=.

Notice that M� is an integer by our assumption. We estimate the sum of the hM�-distances

between the nodes in the optimal placement P �. This sum is then OPT + M�

B B = OPT +

M� = (1+)M�. Thus it follows that OPThM� � (1+)B� and the (2�2=p)-approximation

PT that is computed in Step 3 will satisfy Sh(PM�) � (2�2=p)OPThM� � (2�2=p)(1+)M� .

Thus, we observe that the procedure will return \Yes". Moreover, since OPThM� �

(1 + )B�, it follows that F (M�) � (1 + ), where F is the function de�ned in Lemma 8.2.

By the results of this lemma we then have F (M) � (1 + ) for all M �M�.

This is equivalent to saying that for all M � M� the corresponding optimal place-

ment P �
M minimizing ShM satis�es ShM (P

�
M ) � (1 + )M . Hence for all these values of M ,

the approximation PM computed in Step 3 of the test procedure will satisfy ShM (PM ) �

(2� 2=p)(1 + )M . But this means that Algorithm 5 will return \Yes" for all M �M�.

Now we are ready to complete the proof of the performance of our approximation algo-

rithm.

Lemma 8.4 For any �xed  > 0 Algorithm HEUR-FOR-(Min-Sum, Sum), as applied to

TI-(Min-Sum, Sum), has a performance of ((2� 2=p)(1 + 1=); (2 � 2=p)(1 + )).
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Proof: By Corollary 8.3, the binary search in Algorithm 4 will successfully end with a value

of M satisfying M � OPT=. Let PM be the corresponding placement that is returned by

Sum-Test. Then we have

Sc(PM ) � Sh(PM ) � (2�
2

p
)(OPT +

M

B
B) � (2�

2

p
)(1 +

1


) �OPT:

Moreover, we see that

M

B
Sd(PM ) � Sh(PM ) � (2�

2

p
)(1 + )M:

Multiplying the last chain of inequalities by B=M yields

Sd(PM ) � (2� 2=p)(1 + )B:

This completes the proof.

In the above version of the heuristic for TI-(Min-Sum, Sum) the the test procedure Sum-

Test is called O
�
log

�
p2cmax



��
times during the binary search, where cmax := maxf c(e) : e 2

E g. For the rest of this section, let Ttest(n) = O(n2) the time required for a single call to

Sum-Test. Then, the total time for the algorithm would be O
�
log p2cmax

 � Ttest(n)
�
. We will

now show how to improve this running time.

8.2.2 Outline of a faster heuristic

If Sum-Test is called with some parameter K, it �rst computes the compound weights hK .

Then, in Step 3 it computes a 2 � 2=p-approximation for the (unicriterion) TI-(Min-Sum)

instance with edge weights given by hK . This is done with the help of our algorithm from

Section 6. Recall that this algorithm generated n placements P (v), one for each vertex and its

nearest neighbors with respect to hK . It then outputs the placement with the best objective

function value ŜhK (P (v)).

As before, K� 2 I :=
�
0; p2maxf c(e) : e 2 E g

�
be the minimum value such that Sum-

Test(K�) =\Yes". Assume that we already know the ordering of the edges in the graph with

respect to hK� . Then, for each vertex v we can �nd the p�1 nearest neighbors with respect to

hK� . We do not need to know the weights; the ordering su�ces. Thus, given the knowledge

about the ordering with respect to hK� , we can �nd a set of n placements containing the

placement output by our slow heuristic for TI-(Min-Sum, Sum) above.

This is what our faster algorithm will do in the �rst phase. It will �nd the ordering with

respect to hK� and narrow our search to n placements. This is done without actually knowing

K�. In the second phase, we will determine the placement among these n placements which

our slow heuristic would output.
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8.2.3 Finding an ordering with respect to hK�

Let m = n(n�1)
2 be the number of edges in the graph G = (V;E). Basically we wish to

sort the set S := fhK�(e1); : : : ; hK�(em)g where K� is not known. However, for any K

we can decide whether K� � K or K� > K by one call to our test procedure Sum-Test:

If Sum-Test(K) =\Yes", then we know that K� � K. Otherwise, we can conclude that

K� > K.

Recall that the hK-weight of an edge e is given by c(e) +M d(e)
B . Thus, for each edge e,

the compound weight hK(e) viewed as a function of K is a linear function. Given two edges

e and e0, their ordering with respect to the compound weights hK changes at most once when

K varies, namely at the point where the two linear functions intersect. Clearly, given two

edges e and e0 this value of K can be computed in constant time.

To simplify the presentation, we will �rst sketch the main idea before going into details.

Imagine applying a (sequential) sorting algorithm to S. The sorting algorithm would start

by comparing some values hK�(e) and hK�(e0). Then, we could do the the following:

We compute intersection point of the two linear functions hK(e) and hK(e
0). If they do

not intersect, the ordering of e and e0 will not change if K varies. Hence, inspecting hK(e)

and hK(e
0) for any value ofK will tell us whether hK�(e) � hK�(e0) or vice versa.. Otherwise,

let Ke;e0 be the value of K where hK(e) and hK(e
0) intersect. We call our procedure Sum-Test

for K = Ke;e0 and �nd out whether whether K� � Ke;e0 or K
� > Ke;e0 . Since the ordering

of the edges e and e0 only changes at Ke;e0 , we can then decide whether hK�(e) � hK�(e0) or

vice versa. Thus, by O(1) calls to Sum-Test, we can determine the result of a comparison.

Using the idea from above in conjunction with a standard sequential sorting algorithm

(which makes O(m logm) comparisons), we could �nd the ordering of the edges at K� by

O(m logm) calls to Sum-Test. However, using Megiddo's technique [Meg83] we can speed up

the algorithm substantially.

The idea is to use an adaptation of a sequentialized parallel sorting algorithm such as

Cole's scheme [Col88]. Recall that a comparison essentially consists of a call to Sum-Test

computation, so comparisons are expensive. Using the parallel sorting scheme, we basically

accept a greater total number of comparisons, but we can use the parallelism to group the

independent comparisons made in one stage of the parallel machine and then answer all of

them together e�ciently.

Cole's algorithm uses m processors to sort an array of m elements in parallel time

O(logm). Recall that in our case m = jEj is the number of edges in the graph G = (V;E).

The algorithm is simulated serially, employing one \processor" at a time, according to some

�xed permutation, letting each perform one step in each cycle. When two values hK�(e) and

hK�(e0) have to be compared, we compute the intersection point of the two linear functions,

where the ordering changes (but we do not know the result of the comparison at this point).
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The crucial observation is that these critical values can be computed independently, meaning

that each of the \processors" does not need any knowledge about the critical points computed

by the other ones.

After the �rst of the O(logm) stages, we are given at most m critical values of K, say

K1 � K2 � � � � � Kr with r � m. For convenience set K0 := �1 and Kr+1 := +1. Using

binary search, we �nd an interval [Ki;Ki+1], where K
� must be contained.

This is done in the following way: Start with low := �1 and high := +1. Then compute

the medianM := Kb(r+1)=2c of the Kj in O(r) time. We then decide whetherK� �M by one

call to Sum-Test. If Sum-Test(K) =\Yes", then we know that K� �M . Otherwise, K� > M .

In the �rst case, we set high := M and remove all values Kj with Kj > M from our set of

critical values. Similarly, in the second case we set low :=M and remove the values smaller

than the median M . Clearly, this can be done in O(r) time. Since M was the median of the

Kj the number of critical values decreases by a factor of one half.

Then, the total time e�ort T ime(r) for the binary search satis�es the recurrence:

T ime(r) = T ime(r=2) + Ttest(n) +O(r);

where Ttest((n; p) is the time needed for one call to Sum-Test. The solution of the recurrence

is T ime(r) = O(r + Ttest(n) log r). Since r 2 O(m), this shows that we obtain the interval

[Ki;Ki+1] containingK
� by O(logm) calls to Sum-Test plus an overhead of O(m) elementary

operations.

Notice that by construction the interval [Ki;Ki+1] does not contain any critical points

in the interior. If Ki = Ki+1, then we know that K� = Ki = Ki+1. This way we have

determined K�. In this case we can compute the order of all edges with respect to hK� in

O(m logm) time and stop the modi�ed sorting algorithm.

Otherwise, the interior of [Ki;Ki+1] is nonempty. By one call to Sum-Test we can �nd out

whether K� � Ki, which implies that K� = Ki since we know that K� 2 [Ki;Ki+1]. Again,

the adopted sorting procedure can stop after having computed the ordering of all edges with

respect to hK� .

The remaining case is that Ki < K� � Ki+1. In this case it is easy to see that answering

the comparisons from the �rst round by inspecting the weights h� , where � 2 (Ki;Ki+1) is any

interior point of the interval [Ki;Ki+1], gives the same results as answering the comparisons

with respect to the hK�-weights.

Thus, at the end of the the �rst round, our algorithm has either found K� and thus the

ordering of all edges in the graph with respect to their hK�-weights, or we can answer the

comparisons from the �rst round using the ordering of the edges with respect to h� .

The above process is repeated O(logm) times, once for each parallel step of the parallel

sorting machine. Since in each of the O(logm) rounds we answer all comparisons of the
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parallel sorting scheme, upon termination we have found the ordering of the edges with

respect to the hK�-weights.

The time needed for the �rst stage of the algorithm above can be estimated as follows:

There are O(logm) cycles altogether. In each round we evaluate O(m) intersection points.

Also, we need O(logm) calls to Sum-Test plus the overhead of O(m). Thus we have the

following lemma:

Lemma 8.5 The improved heuristic computes the ordering of the edges with respect to hK�

in time O(n2 log n).

8.2.4 Finding the right placement

Let Pslow be the placement generated by our slow heuristic for TI-(Min-Sum, Sum). We

have already argued that, given the ordering of the edges with respect to hK� we can �nd a

set P = fP (v1); : : : ; P (vn)g of placements such that Pslow 2 P. By the construction of our

slow algorithm, it follows that Pslow is a placement P (vj) in P with minimum ŜhK� (P (vj)).

Using the running time analysis from Section 7, we see that P can be determined in

O(n2 + np logn) time. We now show how to �nd Pslow in the set P e�ciently.

For each placement P (vi) 2 P denote by Ci := Ŝc(P (vi)) and Di := Ŝd(P (vi)) the

simpli�ed sum of the c-weights and d-weights respectively (see Equation (16)). Clearly, all

the Ci and Di can be found in an overall time of O(np).

Observe that ŜhK (P (vi)) = Ci + KDi
B . Our task now becomes to �nd the placement

having minimum value when K = K�. Again, we can view ŜhK (P (vi)) as a linear function

of K. The ordering of two placement changes, when two of the functions intersect. Using

the same technique as �nding the ordering of the edges with respect to hK�, we can �nd the

ordering of the placements in P with respect to ŜhK� in time O(m logm+ Ttest(n)).

This enables us to �nd the same placement as the slow heuristic in an overall time of

O(m logm+Ttest(n) log
2m). Since, Ttest(n) = O(n2) andm = O(n2), we obtain the following

theorem.

Theorem 8.6 For any �xed  > 0, the improved heuristic for TI-(Min-Sum, Sum) has a

performance of ((2 � 2=p)(1 + 1=); (2 � 2=p)(1 + )) and a running time of O(n2 log2 n).

9 Extensions

We now briey discuss some extensions of our algorithms presented in the previous sections.
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9.1 Extension to the node-weighted case

We show how to extend HEUR-FOR-DIA-CONSTRAINT to apply to the case when we addi-

tionally have a weight for each node in G, and the minimization objective is a function of

both the edge weights and node weights. For the sake of brevity, we will illustrate our ideas

for such an extension by considering one speci�c problem, namely TI-(Min-Sum, Dia). The

approximation algorithms for the other problems can be extended in a similar fashion.

The input consists again of a complete undirected graph G = (V;E) with edge-weight

functions c; d and weights !(v), for each v 2 V . The goal is to �nd a placement P , with

jP j = p, such that the objective function

Swtc (P ) =
X

e=(v;w)
v;w2P

c(v; w) +
X
v2P

!(v)

is minimized subject to the same constraint as for the (Min-Sum, Dia) problem, namely

Dd(P ) � B. We denote this extension of the (Min-Sum, Dia) problem by (Min-Sum,

Dia)wt.

To obtain an approximate solution for TI-(Min-Sum, Dia)wt, we transform a given

instance I of TI-(Min-Sum, Dia)wt into an instance I 0 of TI-(Min-Sum, Dia) as discussed

in the proof of the following lemma.

Lemma 9.1 Given any instance I of TI-(Min-Sum, Dia)wt, there are linear time transfor-

mations f and g such that both of the following conditions hold.

1. The transformation f constructs an instance I 0 of TI-(Min-Sum, Dia) from I.

2. Given a placement P 0 of p nodes for I 0 with diameter D and objective function value C,

g constructs a placement P of p nodes for I such that P has diameter D and objective

function value C.

Proof: Given the instance I, the transformation f constructs an instance I 0 of TI-(Min-

Sum, Dia) as follows. The nodes in G0(V 0; E0) are in one-to-one correspondence with the

nodes of G. The d0-cost on each edge in G0 is the same as the d-cost of the corresponding

edge in G. The c0-cost for an edge (v0; w0) in G0 is de�ned as follows:

c0(v0; w0) := c(v; w) +
1

2p
(!(v) + !(w)):

It is easy to check that the triangle inequality is satis�ed for c0. Next consider a placement

P 0 of p nodes in I 0. The transformation g chooses as its placement P the p nodes in I
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corresponding to the p nodes in I 0. By a straightforward calculation, it can be seen that for

any placement P of p nodes

X
e0=(v0;w0)

v0;w02P 0

c0(v0; w0) =
X
v2P

!(v) +
X

e=(v;w)
v;w2P

c(v; w):

Combining Lemma 9.1 with Theorem 8.1, we obtain a (2; 2 � 2=p)-approximation for

TI-(Min-Sum, Dia)wt.

9.2 Extension to distinguished nodes

We now turn to the extension of our techniques to another variant of the problems. In this

variant (referred to as placement with distinguished nodes), we are given a subset D � V

that must be included in the solution. The objective function to be minimized becomes then

Mc(P [D), whereMc 2 fDc;Sc;Qcg. The problem is to �nd a set P � V �D of p nodes

minimizingMc (subject to the constraint ~Md(P [D) � B, where again ~Md 2 fDd;Sd;Qdg).

As in the node weighted case, such extensions can be done for all the problems considered.

For a problem �, we use �D to denote the problem with distinguished nodes. Since the basic

approach for solving each of the problems �D is similar, we illustrate our ideas by considering

two problems, namely TI-(Min-Sum, Dia)D and TI-(Min-Dia, Dia)D. We have chosen

these two problems since one of them involves two similar cost measures while the other

involves two di�erent cost measures.

Approximating TI-(Min-Sum, Dia)D

We show how to adopt HEUR-FOR-DIA-CONSTRAINT in Figure 2 to devise approximation

algorithm for TI-(Min-Sum, Dia)D. The modi�ed heuristic HEUR-DISTINGUISHED is given

in Figure 6.

We now establish the performance guarantee of the modi�ed heuristic. As the proof

parallels the one for Theorem 8.1, we just sketch the main steps.

Theorem 9.2 Algorithm HEUR-DISTINGUISHED called withMc = Sc is an approximation

algorithm for TI-(Min-Sum, Dia)D with a performance of (2� 2=(p+ jDj); 2).

Proof: Consider an optimal solution P � such that Dd(P
�[D) � B. It can be seen that any

node from P � [D is in Vcand and thus the heuristic will not output a certi�cate of failure.

The fact that the diameter constraint Dd(P [ D) � B is violated by a factor of at most 2

is again a consequence of the fact that any placement P (v) [D considered by the heuristic

forms a clique in (G0)2.
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Procedure HEUR-DISTINGUISHED

1 G0 := bottleneck(G; d;B)
2 Vcand := fv 2 G

0 : v 62 D and jN(v;G0) nDj � p� 1g[fv 2 D : jN(v;G0) nDj � pg
3 if Vcand = ; then return \certi�cate of failure"
4 Let best := +1
5 Let Pbest := ;
6 for each v 2 Vcand do
7 Let ND(v;G

0) = fw1; : : : ; wrg with c(v; w1) � � � � � c(v; wr)
8 if v 2 D then let P (v) := fv; w1; : : : ; wpg else let P (v) := fv; w1; : : : ; wp�1g
9 ifMc(P (v) [D) < best then Pbest := P (v)
10 output Pbest

Figure 6: Modi�ed Heuristic for TI-(Min-Sum, Dia)D.

De�ning ~Sv :=
P

w2P�[D
w 6=v

c(v; w) (v 2 P � [D) and choosing v 2 P � [D with minimum

~Sv, we have

Sc(P
� [D) =

1

2

X
v2P �[D

~Sv �
p+ jDj

2
~Sv:

Consider the iteration of the main loop when the heuristic considers v. Let N(v) := P (v) n

fvg = fw1; : : : ; wkg be the set of nearest neighbors of v in V �D, where k = p if v 2 D and

k = p � 1 if v 2 P �. Again, we have S0
v :=

P
w2(P (v)[D)nfvg c(v; w) � ~Sv, by the fact that

N(v) is the set of k nearest neighbors of v. Now,

Sc(P (v) [D) = S0
v +

1

2

X
u2(P (v)[D)�fvg

X
w2(P (v)[D)�fv;ug

c(u;w)

� S0
v +

1

2

X
u2(P (v)[D)�fvg

X
w2(P (v)[D)�fv;ug

(c(v; u) + c(v; w))

= S0
v +

1

2

X
u2(P (v)[D)�fvg

2
4 X
w2(P (v)[D)�fv;ug

c(v; u) +
X

w2(P (v)[D)�fv;ug

c(v; w)

3
5

= (p+ jDj � 1)S0
v

� (p+ jDj � 1)
2

p+ jDj
� OPT (I) =

�
2�

2

p+ jDj

�
� OPT (I):

Approximating TI-(Min-Dia, Dia)D

As in the case of TI-(Min-Dia, Dia), where we simply used the heuristic designed for

TI-(Min-Sum, Dia) with the measure Mc := D̂c, we can again use the heuristic HEUR-

DISTINGUISHED for TI-(Min-Sum, Dia)D and merely setMc := D̂
D
c , where for a placement
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P (v) consisting of a node v and its r nearest neighbors v1; : : : ; vr, (r 2 fp; p� 1g)

D̂D
c (P (v)) := maxf c(v; w) : w 2 fv1; : : : ; vrg [D g (22)

We then obtain the following extension of Theorem 7.5.

Theorem 9.3 Algorithm HEUR-DISTINGUISHED, called withMc := D̂
D
c , is an approxima-

tion algorithm for TI-(Min-Dia, Dia)D with a performance of (2; 2).

Proof: Consider an optimal solution P � such that OPT := Dd(P
� [ D) � B. It can be

seen that P � [D � Vcand, and thus Vcand is non-empty. Consequently, the heuristic will not

output a \certi�cate of failure".

Any placement considered in the heuristic HEUR-DISTINGUISHED will turn into a clique

in (G0)2, where G0 = bottleneck(G; d;B). Thus we conclude that any placement considered

by the heuristic will violate the diameter constraint by a factor of at most 2.

Now consider an arbitrary node v 2 P �. Clearly v 2 Vcand. Consider the step of the

algorithm HEUR-DISTINGUISHED in which it considers v. It is easy to see that D̂D
c (fvg [

fw1; : : : ; wp�1g) � OPT . Thus, for the placement P (~v) output by the algorithm D̂D
c (P (~v)) �

OPT . By the triangle inequality it follows that Dc(P (v) [D) � 2 � D̂D
c (P (~v)) � 2 �OPT .

The approximation algorithms for TI-(Min-Dia, Sum) and TI-(Min-Sum, Sum) can

also be extended to handle the case of distinguished nodes. By using the ideas in this section

and the techniques in Section 7, we obtain the following theorems.

Theorem 9.4 There are polynomial time approximation algorithms for TI-(Min-Dia, Sum)D

and TI-(Min-Sum, Sum)D with performances (2; 2 � 2=(p+ jDj)) and

((1 + 1=) (2� 2=(p+ jDj)) ; (1 + ) (2� 2=p+ jDj))), respectively, where  > 0 is any �xed

constant.

10 Concluding remarks

We introduced and studied the complexity and approximability of several natural bicriteria

compact location problems. Our results demonstrate that when distance functions obey the

triangle inequality, the problems are provably easier to approximate.

Tables 2 to 4 summarize our results. Table 2 shows the hardness results for the various

unicriterion problems. Table 3 gives the corresponding approximation results. Table 4 shows

our results for bicriteria compact location problems. The horizontal entries denote the objec-

tive function. For example the entry in row i, column j denotes the performance guarantee

for the problem of minimizing objective j with a budget on objective i.

The results in this paper raise the following questions.

33



Problem (Min-Dia) (Min-Sum) (Min-Var)

General NP-hard NP-hard NP-hard
(Prop. 5.3) (Prop. 5.3) (Prop. 5.3)

Triangle Inequality NP-hard NP-hard NP-hard
(Prop. 5.3) (Prop. 5.3) (Prop. 5.3)

1D Version E�ciently solvable E�ciently solvable E�ciently solvable
[AI+91] [AI+91]

2D Version E�ciently solvable Open E�ciently solvable
[AI+91] [AI+91]

Table 2: Complexity Results for Compact Location Problems

Note: The 1D version of (Min-Sum) can be solved e�ciently because every optimal solution
consists of p contiguous points.

(Min-Dia) (Min-Sum) (Min-Var)
Problem UB LB UB LB UB LB

General | NGR | NGR | NGR
(Prop. 5.4) (Prop. 5.4) (Prop. 5.4)

Triangle 2 2 2- 1=p Open 4 - 6=p Open
Inequality (Thm. 6.6) (Prop. 5.4) (Thm. 6.4) (Thm. 6.6)

Table 3: Approximability Results for NP-hard Compact Location Problems

Notes: UB denotes the best known upper bound on the performance guarantee. LB denotes
the lower bound on the performance guarantee; that is, the intrinsic limit assuming P 6= NP.
NGR is an abbreviation for \No Guaranteed Ratio".

! Objective Diameter Sum
# Budget

Diameter approximable within (2; 2)
not approximable within
(2� "; 2) or (2; 2� ")

approximable within (2� 2

p
; 2)

not approximable within
(�; 2� ")

Sum approximable within (2; 2� 2

p
)

not approximable within (2�"; �)

approximable within
((1 + )(2� 2

p
); (1 + 1


)(2� 2

p
))

Table 4: Performance guarantee results for bicriteria compact location in a complete graph
with both the edge weights obeying the triangle inequality.  > 0 is a �xed accuracy param-
eter. The non-approximability results stated assume that P 6= NP. As discussed in Section 9,
these results can be extended to handle node weights and also the case of distinguished nodes.
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1. Reference [RRT94] studies approximation algorithms for dispersion problems. It would

be of interest to investigate approximation algorithms for bicriteria versions of practical

dispersion problems. A slightly di�erent bicriteria formulation involving node and edge

weights for dispersion problems is considered in [RRT95].

2. In a companion paper [KN+95c], we study bicriteria compact location problems when

the underlying graph is a tree. It is of interest to consider other restricted graph classes

which arise in the context of parallel computing and devise e�cient algorithms for the

bicriteria problems studied here. The n-dimensional hypercubes and n-dimensional

meshes are two examples of natural graph classes for which bicriteria compact location

problems could be investigated.

3. The compact location problem is an instance of a more general class of problems where

the goal is to �nd an embedding of the problem topology (graph) onto a host computer

topology so as to minimize the total communication cost. Placements produced using

the algorithms presented in this paper may lead to heavy congestion in one or more

of the links. Therefore, it is of interest to model and investigate compact location

problems taking the congestion of links into account.
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